Search

Top 60 Oracle Blogs

Recent comments

Execution plans

v$session

Here’s an odd, and unpleasant, detail about querying v$session in the “most obvious” way. (And if you were wondering what made me resurrect and complete a draft on “my session id” a couple of days ago, this posting is the reason). Specifically if you want to select some information for your own session from v$session the query you’re likely to use in any recent version of Oracle will probably be of the form:


select {list for columns} from v$session where sid = to_number(sys_context('userenv','sid'));

Unfortunately that one little statement hides two anomalies – which you can see in the execution plan. Here’s a demonstration cut from an SQL*Plus session running under 19.3.0.0:

Negative Offload

At the Trivadis Performance Days 2019 I did a presentation on using execution plans to understand what a query was doing. One of the examples I showed was a plan from an Exadata system (using 11.2.0.4) that needed to go faster. The plan was from the SQL Monitor report and all I want to show you is one line that’s reporting a tablescan. To fit the screen comfortably I’ve removed a number of columns from the output.

The report had been generated while the statement was still running (hence the “->” at the left hand edge) and the query had scanned 166 segments (with no partition elimination) of a table with 4,500 data segments (450 range partitions and 10 hash sub-partitions – note the design error, by the way, hash partitioning in Oracle should always hash for a powert of 2).

Optimizer Tricks 1

I’ve got a number of examples of clever little tricks the optimizer can do to transform your SQL before starting in on the arithmetic of optimisation. I was prompted to publish this one by a recent thread on ODC. It’s worth taking note of these tricks when you spot one as a background knowledge of what’s possible makes it much easier to interpret and trouble-shoot from execution plans. I’ve labelled this one “#1” since I may publish a few more examples in the future, and then I’ll have to catalogue them – but I’m not making any promises about that.

Here’s a table definition, and a query that’s hinted to use an index on that table.

Free Space

Several years ago I wrote a note about reporting dba_free_space and dba_extents to produce a map of the space usage in a tablespace in anticipation of messing about with moving or rebuilding objects to try and reduce the size of the files in the tablespace.  In the related page where I published the script I pointed out that a query against dba_extents would be expensive because it makes use of structure x$ktfbue which generates the information dynamically by reading segment header blocks.

opt_estimate 5

If you’ve been wondering why I resurrected my drafts on the opt_estimate() hint, a few weeks ago I received an email containing an example of a query where a couple of opt_estimate() hints were simply not working. The critical features of the example was that the basic structure of the query was of a type that I had not previously examined. That’s actually a common type of problem when trying to investigate any Oracle feature from cold – you can spend days thinking about all the possible scenarios you should model then the first time you need to do apply your knowledge to a production system the requirement falls outside every model you’ve examined.

Before you go any further reading this note, though, I should warn you that it ends in frustration because I didn’t find a solution to the problem I wanted to fix – possibly because there just isn’t a solution, possibly because I didn’t look hard enough.

opt_estimate 4

In the previous article in this series on the opt_estimate() hint I mentioned the “query_block” option for the hint. If you can identify a specify query block that becomes an “outline_leaf” in an execution plan (perhaps because you’ve deliberately given an query block name to an inline subquery and applied the no_merge() hint to it) then you can use the opt_estimate() hint to tell the optimizer how many rows will be produced by that query block (each time it starts). The syntax of the hint is very simple:

opt_estimate 3

This is just a quick note to throw out a couple of of the lesser-known options for the opt_estimate() hint – and they may be variants that are likely to be most useful since they address a problem where the optimizer can produce consistently bad cardinality estimates. The first is the “group by” option – a hint that I once would have called a “strategic” hint but which more properly ought to be called a “query block” hint. Here’s the simplest possible example (tested under 12.2, 18.3 and 19.2):

Glitches

Here’s a question just in from Oracle-L that demonstrates the pain of assuming things work consistently when sometimes Oracle development hasn’t quite finished a bug fix or enhancement. Here’s the problem – which starts from the “scott.emp” table (which I’m not going to create in the code below):

opt_estimate 2

This is a note that was supposed to be a follow-up to an initial example of using the opt_estimate() hint to manipulate the optimizer’s statistical understanding of how much data it would access and (implicitly) how much difference that would make to the resource usage. Instead, two years later, here’s part two – on using opt_estimate() with nested loop joins. As usual I’ll start with a little data set:

Can’t Unnest

In an echo of a very old “conditional SQL” posting, a recent posting on the ODC general database discussion forum ran into a few classic errors of trouble-shooting. By a lucky coincidence this allowed me to rediscover and publish an old example of parallel execution gone wild before moving on to talk about the fundamental problem exhibited in the latest query.

The ODC thread started with a question along the lines of “why isn’t Oracle using the index I hinted”, with the minor variation that it said “When I hint my SQL with an index hint it runs quickly so I’ve created a profile that applies the hint, but the hint doesn’t get used in production.”