Search

OakieTags

Who's online

There are currently 0 users and 30 guests online.

Recent comments

linux

Creating a RAC 12.1 Data Guard Physical Standby environment (4)

In the previous three parts of this series a lot of preparation work, needed for the configuration of Data Guard, was performed. In this part of the mini-series they all come to fruition. Using the Data Guard broker a switchover operation will be performed. A couple of new features in 12c make this easier. According to the “Changes in This Release for Oracle Data Guard Concepts and Administration” chapter of the 12.1 Data Guard Concepts and Administration guide:

When [you, ed.] perform a switchover from an Oracle RAC primary database to a physical standby database, it is no longer necessary to shut down all but one primary database instance.

I have always wanted to test that in a quiet moment…

Performing in the cloud – network latency

To me, ‘cloud computing’ is renting a compute resource to perform a task. In order to use that compute resource, you need to instruct it to do something, which is typically done via the network. If the task the compute resource needs to fulfil is being an application server or being a client or both in the case of an application server that uses an Oracle database, the network latency between the client of the database and the database server is a critical property.

An introduction to Performance Co Pilot, part 2.

This second blogpost on Performance Co Pilot or PCP in short is about visualisation. In case you haven’t read the first part, here it is, which describes how it works, why you should use it, and how you can install it.

Pmchart.
One way of visualising PCP is using the pmchart utility. The pmchart utility is installed via the pcp-gui package (yum install pcp-gui). The pmchart utility uses X to display a window and draw lines, bar graphs, area graphs, etc. in a sense alike the performance manager on Microsoft Windows. You can select the individual performance statistics PCP measures, which can be viewed and investigated with pminfo, for example kernel.all.cpu.user:

Creating a RAC 12.1 Data Guard Physical Standby environment (3)

In the previous two parts of this series you read about my lab environment and the preparations on the network side as well as the database. In this part I’ll cover the database duplication. Again, this won’t be a short post …

NOTE: As always, this is just a demonstration using VMs in my lab, based on my notes. Your system is most likely different, so in real-life you might take a different approach. The techniques I am using here were suitable for me, and my own small scale testing. I tried to make sure they are valid, but you may want to allocate more resources in your environment. Test, test, test on your own environment on test kit first!

Step 1: Create an initialisation file

The next step is the preparation of an initialisation file. I am taking NCDBA as the sample and transfer it over to rac12sec1:

Auditing Oracle database stopping and starting using the ELK stack

This blog post is about two things: one how you can monitor who is bringing you database up and down (there is a twist at the end!) and two how you can very conveniently do that with aggregated logs in a browser with a tool called ‘Kibana’, which is the K in ELK.

I’m speaking at Advanced Spark Meetup & attending Deep Learning Workshop in San Francisco

In case you are interested in the “New World” and happen to be in Bay Area this week (19 & 21 Jan 2017), there are two interesting events that you might want to attend (I’ll speak at one and attend the other):

Advanced Spark and TensorFlow Meetup

I’m speaking at the advanced Apache Spark meetup and showing different ways for profiling applications with the main focus on CPU efficiency. This is a free Meetup in San Francisco hosted at AdRoll.

An introduction to PCP / Performance Co Pilot on Oracle Linux

I was investigating gathering performance data on (oracle) linux servers recently and came across Performance Co-Pilot (PCP). I have come across this product regularly in the past, but it seemed somewhat abstract to me, and I never ran into any actual usage. And we got sar for linux performance data and for the Oracle database we got oswatcher (and it’s exadata cousin exawatcher) and TFA right? How wrong I was.

First let me explain a few things.

Creating a RAC 12.1 Data Guard Physical Standby environment (2)

In the first part of this mini-series you saw me define the environment as well as creating a primary database. With that out of the way it’s time to think about the standby. Before the standby can be created, a few preparations are necessary both on the primary as well as the standby cluster.

NOTE: As always, this is just a demonstration using VMs in my lab, based on my notes. Your system is most likely different, so in real-life you might take a different approach. The techniques I am using here were suitable for me, and my own small scale testing. I tried to make sure they are valid, but you may want to allocate more resources in your environment. Test, test, test on your own environment on test kit first!

Preparing the Creation of the Standby Database

Creating a RAC 12.1 Data Guard Physical Standby environment (1)

I have just realised that the number of posts about RAC 12c Release 1 on this blog is rather too small. And since I’m a great fan of RAC this has to change :) In this mini-series I am going to share my notes about creating a Data Guard setup on my 2 node 12.1.0.2.161018 RAC primary + identical 2 node RAC standby system in the lab.

NOTE: As always, this is just a demonstration using VMs in my lab, based on my notes. Your system is most likely different, so in real-life you might take a different approach. The techniques I am using here were suitable for me, and my own small scale testing. I tried to make sure they are valid, but you may want to allocate more resources in your environment. Test, test, test on your own environment on test kit first!

The lab Environment

My environment consists of the following entities:

Advanced Oracle memory profiling using pin tool ‘pinatrace’

In my previous post, I introduced Intel Pin. If you are new to pin, please follow this link to my previous post on how to set it up and how to run it.

One of the things you can do with Pin, is profile memory access. Profiling memory access using the pin tool ‘pinatrace’ is done in the following way:

$ cd ~/pin/pin-3.0-76991-gcc-linux
$ ./pin -pid 12284 -t source/tools/SimpleExamples/obj-intel64/pinatrace.so

The pid is a pid of an oracle database foreground process. Now execute something in the session you attached pin to and you find the ‘pinatrace’ output in $ORACLE_HOME/dbs: