Search

Top 60 Oracle Blogs

Recent comments

performance

Unpivot

An interesting observation appeared recently as a side-channel on a question on the OTN database forum – how does Oracle execute an unpivot() operation. Here’s an example of such a query:

Instrumentation … not just for debugging

Yeah I know.  You’re probably thinking “Here’s another blog post from someone telling us how important it is to instrument our code, so we can get better debugging, better performance, blah blah blah”.

Quiz Night

If this is the closing section of thetkprof output from the trace file of a single end-user session that has a performance problem, what’s the most obvious deduction you can make about the cause of the problem, and what sort of action would you take next ?

SUM is better than DISTINCT

There is a good chance that (based on this blog post title) that you’re expecting a post on SQL, and that’s understandable. But I’ll come clean nice and early – that was just to lure you in Smile

The post is about SUM and DISTINCT, but not in the technical sense.

Guesswork

A recent posting on the OTN database forum described a problem with an insert (as select) statement that sometimes ran extremely slowly: nothing interesting yet, there could be plenty of boring reasons for that to happen. The same SQL statement (by SQL_ID) might take 6 hours to insert 300K rows one night while taking just a few minutes to insert 900K another night (still nothing terribly interesting).

New Events for Data Guard and Synchronous Redo Transport in 12c (2)

After the baseline has been established in the first part of this series it’s time to measure the effect of the network in this part. The second test will introduce an interesting feature: Using Linux’s own Traffic Shaper/Quality of Services module I will add a delay of 100ms to the Data Guard network interface card (NIC) to slow things down a little.

WARNING: this is of course a lab or VM-only situation. I can’t exert control over wire quality in my (own) switches, hence some software magic is needed on my virtual ones. This post is intended to be merely for educational purposes, not for use at work.

I am continuing to use the 2 node RAC 12.1.0.2.170117 primary database on Oracle Linux 7 with UEK 4 and an identical RAC to host my standby database.

New Events for Data Guard and Synchronous Redo Transport in 12c (1)

I may have said it before but I consider presenting and teaching a great way to expand one’s knowledge: first of all it requires me to really understand a subject. Secondly, when presenting, you get lots of interesting questions that can turn into blog posts like this one.

Lately I have been asked about the impact of synchronous log shipping to a physical standby database. I was sure there was an effect to be observed, depending most likely on the network latency between systems but I didn’t have any evidence I could pull out of the hat to back up my thoughts. So what better than trying! I also read that some of the events have changed in 12c, and wanted to make them visible. My environment is based on the 2 node RAC primary/2 node RAC standby configuration I wrote about in my previous posts.

Since their initial setup I upgraded the cluster to 12.1.0.2.170117 for Clusterware and RDBMS.

Long Parsing and PGA limits

Recently I’ve seen not so smart optimizer behavior: one query took long time to parse, and ended with an error hitting PGA_AGGREGATE_LIMIT in few minutes; another query was just parsed for ages while using reasonable (under 2G :)) amount of PGA and still could hit PGA_AGGREGATE_LIMIT but after way more time – up to an hour.


Both cases were similar and involved queries which were accessing views; and those views’ code is generated by an application using lots of IN LISTs and other OR conditions. They both are really ugly SQLs with text length ~100K. When Oracle tried to parse them it took a lot of time and parse attempt had either failed with ORA-4036 soon or hanged for a long time and then failed. Strangely incident trace file generated for ORA-4036 doesn’t include PGA heaps breakdown and you have to manually enable PGA heapdump on error to get an idea what is taking up memory. Here’s what I’ve found in there:

Performing in the cloud – network latency

To me, ‘cloud computing’ is renting a compute resource to perform a task. In order to use that compute resource, you need to instruct it to do something, which is typically done via the network. If the task the compute resource needs to fulfil is being an application server or being a client or both in the case of an application server that uses an Oracle database, the network latency between the client of the database and the database server is a critical property.

Band Join 12c

One of the optimizer enhancements that appeared in 12.2 for SQL is the “band join”. that makes certain types of merge join much more  efficient.  Consider the following query (I’ll supply the SQL to create the demonstration at the end of the posting) which joins two tables of 10,000 rows each using a “between” predicate on a column which (just to make it easy to understand the size of the result set)  happens to be unique with sequential values though there’s no index or constraint in place: